Comparative evaluation of crestal bone level by flapless and flap techniques for implant placement: Systematic review and meta-analysis

Krishankumar Lahoti, Sayali Dandekar, Jaykumar Gade, Megha Agrawal
Department of Prosthodontics, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur, Maharashtra, India

INTRODUCTION

Dental implants facilitate mastication, phonation, and esthetics and are one of the most common treatment modalities used for the rehabilitation of missing teeth. To provide support for the dental prosthesis, implants form a direct connection with the surrounding bone known as “osseointegration.”[1] Enhancing patient comfort and predictability of treatment with precise presurgical

<table>
<thead>
<tr>
<th>Access this article online</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Quick Response Code:</strong></td>
</tr>
<tr>
<td><strong>Website:</strong></td>
</tr>
<tr>
<td><a href="http://www.j-ips.org">www.j-ips.org</a></td>
</tr>
<tr>
<td><strong>DOI:</strong></td>
</tr>
<tr>
<td>10.4103/jips.jips_208_21</td>
</tr>
</tbody>
</table>

Aim: To compare the crestal bone level of flapless technique of dental implant placement with the flap technique.

Setting and Design: This Systematic review and Meta-analysis was conducted according to the Preferred Reporting Items For Systematic Review and Meta-Analyses (PRISMA) Guidelines and registered with PROSPERO.

Materials and Methods: Electronic search of Medline and Google scholar databases for articles from 2010 till March 2020 was performed. Studies comparing the crestal bone level with both the techniques were included. After the collection of data, the risk of bias was assessed for each study.

Statistical Analysis Used: Meta-analysis was executed using RevMan 5 software version 5.3.

Results: 23 studies were included. Statistically significant difference in crestal bone level was found between flapless and flap surgery with mean difference of −0.14 (flapless placement versus flap surgery; 95% CI: −0.24 to −0.03; \( P = 0.01^* \)). The difference in crestal bone level between the 2 groups was not statistically significant with a mean difference of −0.05(Guided flapless placement versus flap surgery; 95% CI: −0.10 to 0.00; \( P=0.06 \)). Meta-analysis of the freehand flapless surgery with flap surgery generated a mean difference of −0.20 which was found to be statistically significant (Freehand flapless placement versus flap surgery; 95% CI: −0.37 to −0.03; \( P=0.02^* \)).

Conclusions: Flapless placement of implant can positively influence crestal bone loss in comparison with conventional flap technique.

Keywords: Crestal bone level, dental implant, flapless, guided flapless

treatment planning have been the goals of evolving implant dentistry.[3]

Branemark has advocated flap elevation technique for implant placement since the 1970s. The protocol by Branemark placed the incision line and sutures away from the implant location, reducing the risk of infection at the surgical site location.[3,4] The current advancements and incorporation of new technologies have led to an approach wherein the implants can be placed with minimal incision either freehand or with the assistance of surgical guide. Sustained efforts to incorporate this minimally invasive flapless technique have been made in the field of implantology. Although the scientific evidence to prove the accuracy is still not considered adequate, many researchers advocate this approach based on their assessment of the literature.[5‑7] Chrcanovic et al. in 2014[5] in their systematic review stated that flapless approach significantly influenced the implant survival rate compared to conventional surgery. Lin et al.[6] and Lemos et al.[7] could not establish a significant difference in the survival rate or crestal bone loss between the two techniques. Although freehand implant placement is not considered as accurate as guided flapless surgery as reported by Nickenig et al. in 2010,[8] a review by Voulgarakis et al. in 2014[9] suggested that the surgical guides did not significantly influence the outcome.

No real conclusion has been reached to date which would clearly state the benefit of one approach over the other. This systematic review was thereby designed to compile the literature and compare the flapless and flap techniques in terms of crestal bone level.

MATERIALS AND METHODS

This systematic review was designed and performed in accordance with PRISMA guidelines laid down in 2015.[10] A specifically formulated protocol was registered with PROSPERO (CRD42020162689) before the start of the review.

Study question
“How is the crestal bone level by flapless technique compared to flap technique for dental implant placement?” which fulfills the PICOS framework [Table 1].

Search strategy
Electronic search of MEDLINE and Google Scholar from 2010 to March 2020 was performed. Subject AND Adjective combinations were used:

Subject: Dental implant OR dental implant placement
AND Adjective: flapless technique OR flapless placement

OR open flap OR flap elevation OR flapless surgery OR Keywords – combinations of the following keywords: “crestal bone level,” “dental implant,” “surgery,” “flap,” and “flapless;” “Flapless versus Flap surgery;” and “crestal bone loss.” Furthermore, a manual search was conducted based on the references of selected studies.

Inclusion criteria
a. Studies on patients requiring rehabilitation with dental implant
b. Studies which had data regarding the crestal bone level of both the intervention and comparison groups
c. Prospective clinical studies
d. Full-text access of article
e. Primary language of article: English.

Exclusion criteria
Duplicate studies, In vitro studies, case reports, opinions, letters, and reviews.

Data collection
After the studies were scanned for information, relevant data were tabulated which comprised authors of the study, study year, technique of placement, crestal bone changes, and other outcome measures. Any disagreements were resolved by discussion. The data were compiled to perform meta-analysis.

Risk of bias for individual studies
Bias assessment for randomized studies was done based on the fulfillment of criteria of sequence generation, blinding, allocation concealment, and addressed outcome measures. For nonrandomized studies, the Newcastle–Ottawa scale was used.

Statistical analysis
Crestal bone level was the primary outcome measure, which was treated as a continuous data variable. Aggregate analysis using a fixed-effects model and a random-effects model was carried out. Heterogeneity was tested. Forest plot was generated showing standardized mean difference as the effect measure. Funnel plot was drawn to check for publication bias. The analysis was performed by using Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014.
RESULTS

Study selection
Four thousand four hundred and forty-three records were obtained by the selection process [Figure 1]. After removing duplicate records, 2343 were held back. Fifty-seven records were reached after 2286 were scanned according to eligibility criteria. Thirty-four articles were removed after full-text reading for reasons mentioned in Table 2. In the end, only 23 articles were retained for meta-analysis.

Description of included studies
This review consisted of 23 studies listed in Table 3. Total data from 948 patients rehabilitated with 1407 implants were included. Of the 23 studies, 3 studies had a follow-up time of up to 3 months.[43,56,58] Six had a long follow-up of 3 years or more.[42,46–48,51] In 8 studies, flapless surgery was done with the help of computed tomography (CT)-guided or surgical stent,[56,46–48,54,59,61] while the remaining 15 were performed by the freehand approach. Some studies used a submerged protocol,[41,44,53,56] whereas others used a nonsubmerged protocol,[40,43,45,49,51,52,57,58,60] and two studies involved both the protocols.[46,55] Loading time of the implants was also mentioned in the studies. In five studies, implants were loaded immediately or early for both the groups.[43,50,59,61] Fourteen studies applied a delayed loading protocol,[40,42,44,45,47,49,51,55,57] whereas two studies[46,54] involved both protocols of loading, and in two studies, the implants were not loaded.[56,58]

Among the 23 studies, 694 implants were placed by flapless technique and 713 implants were placed by flap technique. Implant survival ranged from 87.2% to 100% for flapless implant placement and 93.3% to 100% for flap technique. 100% survival was found in 10 studies.[42,45,47,49,53,55–59] Significant results indicating less crestal bone loss with flapless technique were reported by studies.[42,44,49,51,57,58]

Risk of bias assessment of the studies
The Newcastle–Ottawa scale, as shown in Table 4a, showed that all the studies had low bias considering the number of stars. For randomized studies, if studies did not fulfill two or more of the four criteria, the risk of bias was considered high. Among the ten randomized studies, five were low risk.[41,45,57,60,61] Two were judged to be at moderate risk.[46,47] and the remaining three were at high risk of bias [Table 4b].[41,44,48]

Meta-analysis of the studies
Twenty-three studies were included with 1407 implants placed in 948 patients. On account of the heterogeneity (Tau² = 0.04, Chi-square = 126.96, df = 21, \( P < 0.00001; F = 83\% \)), a random-effects model was used. Meta-analysis revealed statistically significant difference in crestal bone level with MD of −0.14 (flapless placement vs. flap surgery; 95% confidence interval [CI]: −0.24−0.03; \( P = 0.01^{*} \)), indicating the positive effect of flapless technique on the outcome measure in comparison with flap technique, as shown in Figure 2.
### Table 1: Description of studies

<table>
<thead>
<tr>
<th>Name</th>
<th>Published time</th>
<th>Study</th>
<th>Patients</th>
<th>Follow-up time</th>
<th>Age range (years)</th>
<th>Failed implants</th>
<th>Survival rate</th>
<th>Loading time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anumala et al.[48]</td>
<td>2019</td>
<td>P</td>
<td>30 patients</td>
<td>6 months</td>
<td>25-50</td>
<td>NM</td>
<td>NM</td>
<td>Conventional</td>
</tr>
<tr>
<td>Kumar et al.[41]</td>
<td>2018</td>
<td>RCT</td>
<td>20 patients</td>
<td>1 year</td>
<td>25-60</td>
<td>1/10 (T)</td>
<td>NM</td>
<td>Conventional</td>
</tr>
<tr>
<td>Naeini et al.[42]</td>
<td>2018</td>
<td>P</td>
<td>49 patients</td>
<td>6-9 years</td>
<td>28-85</td>
<td>0/26 (T)</td>
<td>100% (T)</td>
<td>Conventional</td>
</tr>
<tr>
<td>Singla et al.[43]</td>
<td>2018</td>
<td>RP</td>
<td>20 patients</td>
<td>3 months</td>
<td>30-50</td>
<td>NM</td>
<td>NM</td>
<td>Immediate</td>
</tr>
<tr>
<td>Shamsan et al.[44]</td>
<td>2018</td>
<td>RCT</td>
<td>12 patients</td>
<td>6 months</td>
<td>20-60</td>
<td>0/10 (T)</td>
<td>NM</td>
<td>Conventional</td>
</tr>
<tr>
<td>Wang et al.[45]</td>
<td>2017</td>
<td>RCT</td>
<td>40 patients</td>
<td>2 years</td>
<td>19-45</td>
<td>0/20 (T)</td>
<td>100% (T)</td>
<td>Conventional</td>
</tr>
<tr>
<td>Bömnicke et al.[46]</td>
<td>2017</td>
<td>RCT</td>
<td>38 patients</td>
<td>3 years</td>
<td>53 (21-70)</td>
<td>6/19 (T)</td>
<td>95% (T)</td>
<td>Immediate</td>
</tr>
<tr>
<td>Froum and Khoully[47]</td>
<td>2017</td>
<td>RCT</td>
<td>60 patients</td>
<td>8.6 years</td>
<td>NM</td>
<td>0/30 (T)</td>
<td>100% (T)</td>
<td>Conventional</td>
</tr>
<tr>
<td>Pisoni et al.[44]</td>
<td>2016</td>
<td>RCT</td>
<td>40 patients</td>
<td>3 years</td>
<td>61.69±14.23</td>
<td>5/39 (T)</td>
<td>87.2% (T)</td>
<td>Conventional</td>
</tr>
<tr>
<td>Maier[49]</td>
<td>2016</td>
<td>P</td>
<td>80 patients</td>
<td>1 year</td>
<td>18-78</td>
<td>0/95 (T)</td>
<td>100% (T)</td>
<td>Conventional</td>
</tr>
<tr>
<td>Maló et al.[50]</td>
<td>2016</td>
<td>P</td>
<td>40 patients</td>
<td>3 years</td>
<td>19-79</td>
<td>1/32 (T)</td>
<td>96.8% (T)</td>
<td>Immediate</td>
</tr>
<tr>
<td>Prati et al.[51]</td>
<td>2016</td>
<td>P</td>
<td>60 patients</td>
<td>3 years</td>
<td>25-72</td>
<td>2/64 (T)</td>
<td>99.6% (T)</td>
<td>Conventional</td>
</tr>
<tr>
<td>Samad et al.[52]</td>
<td>2016</td>
<td>P</td>
<td>60 patients</td>
<td>6 months</td>
<td>19-75</td>
<td>1/30 (T)</td>
<td>96.6% (T)</td>
<td>Conventional</td>
</tr>
<tr>
<td>Kanwar et al.[53]</td>
<td>2016</td>
<td>P</td>
<td>60 patients</td>
<td>6 months</td>
<td>20-60</td>
<td>0/10 (T)</td>
<td>100% (T)</td>
<td>Conventional</td>
</tr>
<tr>
<td>Pozzi et al.[54]</td>
<td>2014</td>
<td>RCT</td>
<td>51 patients</td>
<td>1 year</td>
<td>28-84</td>
<td>0/25 (T)</td>
<td>100% (T)</td>
<td>Immediate and</td>
</tr>
<tr>
<td>Sunita and</td>
<td>2013</td>
<td>P</td>
<td>40 patients</td>
<td>2 years</td>
<td>25-62</td>
<td>0/20 (T)</td>
<td>100% (T)</td>
<td>Conventional</td>
</tr>
<tr>
<td>Saphathgiri[55]</td>
<td>2012</td>
<td>P</td>
<td>40 patients</td>
<td>3 months</td>
<td>20-79 (61±9)</td>
<td>0/85 (T)</td>
<td>100% (T)</td>
<td>Not loaded</td>
</tr>
<tr>
<td>Tsoukaki et al.[56]</td>
<td>2013</td>
<td>RCT</td>
<td>20 patients</td>
<td>12 weeks</td>
<td>47.47±9.72 (T)</td>
<td>0/15 (T)</td>
<td>100% (T)</td>
<td>Conventional</td>
</tr>
<tr>
<td>Al-Juboori et al.[57]</td>
<td>2013</td>
<td>P</td>
<td>9 patients</td>
<td>12 weeks</td>
<td>27-62 (50)</td>
<td>0/11 (T)</td>
<td>100% (T)</td>
<td>Implants not</td>
</tr>
<tr>
<td>Froum et al.[59]</td>
<td>2011</td>
<td>P</td>
<td>52 patients</td>
<td>12 months</td>
<td>NM</td>
<td>0/27 (T)</td>
<td>100% (T)</td>
<td>Early Loading</td>
</tr>
<tr>
<td>Cannizzaro et al.[60]</td>
<td>2011</td>
<td>RCT</td>
<td>40 patients</td>
<td>1 year</td>
<td>22-65</td>
<td>2/76 (T)</td>
<td>93.7% (T)</td>
<td>Immediate</td>
</tr>
<tr>
<td>Marcelis et al.[54]</td>
<td>2012</td>
<td>P</td>
<td>20 patients</td>
<td>1 year</td>
<td>48.7±16.4</td>
<td>0/16 (T)</td>
<td>100% (T)</td>
<td>Conventional</td>
</tr>
<tr>
<td>Van de Velde et al.[61]</td>
<td>2010</td>
<td>RCT</td>
<td>13 patients</td>
<td>18 months</td>
<td>39-75 (55.7)</td>
<td>1/36 (T)</td>
<td>97.2% (T)</td>
<td>Immediate</td>
</tr>
</tbody>
</table>

### Table 2: Observations

<table>
<thead>
<tr>
<th>Name</th>
<th>Crestal bone loss</th>
<th>CT guided template</th>
<th>Implant surface modification (brand)</th>
<th>Healing strategy</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anumala et al.[48]</td>
<td>0.083±0.782 (T)</td>
<td>No</td>
<td>Single-stage, single-piece threaded</td>
<td>Nonsubmerged</td>
<td>Lesser loss of bone was found with flapless surgery as also better soft-tissue changes were seen</td>
</tr>
<tr>
<td>Kumar et al.[41]</td>
<td>0.6495±0.17 (T)</td>
<td>No</td>
<td>titanium implants (ADIN Dental Implant Systems Ltd, Alon Tavor, Afula, Israel) MIS</td>
<td>Submerged</td>
<td>Statistically significant less PD, bone loss, and pain were seen with flapless technique</td>
</tr>
<tr>
<td>Naeini et al.[42]</td>
<td>–0.89±0.96 (T)</td>
<td>No</td>
<td>SEVEN implants (MIS implants Technologies Limited) Branemark TiUnite external hex</td>
<td>NM</td>
<td>Flapless implants showed comparable results to conventional flap procedure</td>
</tr>
<tr>
<td>Singla et al.[43]</td>
<td>2.355±0.61 (T)</td>
<td>No</td>
<td>Single-piece Adin implants</td>
<td>Nonsubmerged</td>
<td>Breast bone loss and pain were less with flapless implant placement</td>
</tr>
<tr>
<td>Shamsan et al.[44]</td>
<td>0.45±0.22 (T)</td>
<td>No</td>
<td>Dentium Superline Implant System (Seoul, Korea)</td>
<td>Submerged</td>
<td>Flapless surgery reduces breast bone loss, soft-tissue inflammation, pain, edema, bleeding, and soft-tissue recession</td>
</tr>
</tbody>
</table>
Table 3: Contd...

<table>
<thead>
<tr>
<th>Name</th>
<th>Crestal bone loss</th>
<th>CT guided template</th>
<th>Implant surface modification</th>
<th>Healing strategy</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang et al. [61]</td>
<td>0.5±0.2 (T)</td>
<td>No</td>
<td>ITI dental implant (Institut Straumann AG, Waldenburg, Switzerland)</td>
<td>Nonsubmerged</td>
<td>Flapless approach improved patient comfort and decreased soft-tissue reaction. Comparable MBL and success rates were observed.</td>
</tr>
<tr>
<td>Bönicke et al. [46]</td>
<td>1.34±1.19 (T)</td>
<td>Yes</td>
<td>One-piece (NobelDirect Groovy, Nobel Biocare) and two-piece (NobelDirect Groovy, Nobel Biocare)</td>
<td>Nonsubmerged</td>
<td>Comparable results between the groups with regard to participants with implant failure, prosthesis failure, any complication, or changes of PPD, PI, or GI were found.</td>
</tr>
<tr>
<td>Froum and Khoully [47]</td>
<td>0.36±0.63 (T)</td>
<td>Yes</td>
<td>Anodically oxidized surface one-piece (NobleDirect, Nobel Biocare)</td>
<td>NM</td>
<td>Long-term survival rates, stable bone, and soft-tissue levels were observed with both techniques. Type of approach does not influence peri-implant bone. Flapless surgery caused less crestal bone loss.</td>
</tr>
<tr>
<td>Pisoni et al. [48]</td>
<td>0.198±0.763 (T)</td>
<td>Yes</td>
<td>Two-piece (SLA Standard, Straumann)</td>
<td>NM</td>
<td>More MBL reported with freehand flapless technique. Both techniques demonstrated comparable results for MBL.</td>
</tr>
<tr>
<td>Maier [49]</td>
<td>−0.09±0.49 (T)</td>
<td>No</td>
<td>Two-piece self-locking conical connection abutment system (NobelSpeedy Groovy) with oxidized surfaces (TiUnite; Nobel Biocare AB)</td>
<td>Nonsubmerged</td>
<td></td>
</tr>
<tr>
<td>Maló et al. [50]</td>
<td>1.37±0.2 (C)</td>
<td>No</td>
<td>Cylindrical titanium implant with rough surface obtained with calcium phosphate grit blasting and acid-free roughening process (PrimaConnex, Keystone Dental)</td>
<td>Nonsubmerged</td>
<td></td>
</tr>
<tr>
<td>Prati et al. [51]</td>
<td>1.37±0.2 (C)</td>
<td>No</td>
<td>Cylindrical titanium implant with rough surface obtained with calcium phosphate grit blasting and acid-free roughening process (PrimaConnex, Keystone Dental)</td>
<td>Nonsubmerged</td>
<td></td>
</tr>
<tr>
<td>Samad et al. [52]</td>
<td>0.196±0.204 (T)</td>
<td>No</td>
<td>NM</td>
<td>Nonsubmerged</td>
<td>The flapless surgery has advantages over the conventional technique and helps to increase the patient acceptance.</td>
</tr>
<tr>
<td>Kanwar et al. [53]</td>
<td>1.09±0.37 (T)</td>
<td>No</td>
<td>NM</td>
<td>Submerged</td>
<td>Flapless technique exhibits comparable results to implants placed with flap procedure. Computer-guided and freehand surgeries showed comparable results. More postoperative pain and swelling were found at sites with flap surgery.</td>
</tr>
<tr>
<td>Pozzi et al. [54]</td>
<td>0.71±0.25 (T)</td>
<td>Yes</td>
<td>NobelSpeedy Groovy (Nobel Biocare) threaded titanium parallel-walled implants with external connection and an oxidized surface (TiUnite)</td>
<td>Submerged</td>
<td>Decreased peri-implant sulcus depth values, milder inflammation, and no bone resorption was seen with flapless surgery. Both approaches showed favorable results.</td>
</tr>
<tr>
<td>Sunitha and Saphagiri [55]</td>
<td>0.09±0.02 (T)</td>
<td>No</td>
<td>Root form implant with internal hex abutment connection system</td>
<td>Nonsubmerged</td>
<td></td>
</tr>
<tr>
<td>Katsoulis et al. [56]</td>
<td>1.32±0.25 (T)</td>
<td>Yes</td>
<td>Oxidized (Noble Replace Select Tapered, Nobel Biocare, Goteborg, Sweden)</td>
<td>Submerged</td>
<td></td>
</tr>
<tr>
<td>Tsoukaki et al. [57]</td>
<td>0.00±0.00 (T)</td>
<td>No</td>
<td>Sandblasted+fluoride (OsseoSpeed, Astra Tech, Sweden)</td>
<td>Nonsubmerged</td>
<td></td>
</tr>
<tr>
<td>Al-Juboori et al. [58]</td>
<td>0.9±0.3 (T)</td>
<td>No</td>
<td>Sandblasted and acid etched (SLA, Straumann, Basel, Switzerland)</td>
<td>Nonsubmerged</td>
<td></td>
</tr>
<tr>
<td>Froum et al. [59]</td>
<td>0.25±1.02 (T)</td>
<td>Yes</td>
<td>Oxidized (Noble Replace Select Tapered, Nobel Biocare, Goteborg, Sweden)</td>
<td>NM</td>
<td></td>
</tr>
<tr>
<td>Cannizzaro et al. [60]</td>
<td>0.38±0.42 (T)</td>
<td>No</td>
<td>Sandblasted and acid-NP etched (SwissPlus, Zimmer Dental, Carlsbad, USA)</td>
<td>Nonsubmerged</td>
<td>Both the approaches were comparable with no significant difference.</td>
</tr>
<tr>
<td>Marcelis et al. [61]</td>
<td>0.06±0.12 (T)</td>
<td>Yes</td>
<td>Sandblasted+fluoride (OsseoSpeed, Astra Tech, Sweden)</td>
<td>NM</td>
<td>Flapless implants lose slightly more bone than implants placed with flap elevation. Implants could successfully integrate using a flapless approach compared to conventional technique.</td>
</tr>
<tr>
<td>Van de Velde et al. [62]</td>
<td>1.95±0.7 (T)</td>
<td>Yes</td>
<td>Sandblasted and acid-etched (SLA, Straumann, Basel, Switzerland)</td>
<td>Nonsubmerged</td>
<td></td>
</tr>
</tbody>
</table>

P: Prospective study, RCT: Randomized controlled trial, T: Test group (Flapless surgery), C: Control group (flap surgery), MBL: Marginal bone loss, NM: Not mentioned, CT: Computed tomography, PPD: Probing pocket depth, PI: Plaque index, GI: Gingival Index
For subgroup analysis, meta-analysis of eight studies was performed. Low heterogeneity (Chi-square = 7.77, df = 7, P = 0.35; $I^2 = 10\%$) led to the fixed-effects model. The results indicated that the difference in crestal bone level between these guided flapless and flap technique groups was not statistically significant with a mean difference of $-0.05$ (guided flapless placement vs. flap surgery; 95% CI: $-0.10$–$0.00$; $P = 0.06$) [Figure 3]. Subgroup analysis of the freehand flapless surgery with flap surgery generated a random-effects model due to the high heterogeneity ($\tau^2 = 0.07$, Chi-square = 110.60, df = 13, $P < 0.00001$; $I^2 = 88\%$) with MD of $-0.20$, which was found to be statistically significant (freehand flapless placement vs. flap surgery; 95% CI: $-0.37$–$-0.03$; $P = 0.02$*) [Figure 4].

Publication bias

Funnel plot indicated the absence of publication bias, as shown in Figures 5-7.

DISCUSSION

Implant placement with flap reflection is a traditional well-accepted approach, while flapless placement has been an experimental evolving technique which still requires a backup of substantial evidence. It is much of a controversy with versatile opinions, and no specific conclusion has still been reached. Thus, this review was aimed to compare the available literature to reach a more specific conclusion with evidentiary support from meta-analysis.

Narrowing the inclusion criteria to only randomized trials could have enhanced the homogeneity, but it was noticed that it could exclude several studies with significant data.

The latest meta-analysis concerning the outcome was published in 2020 by Cai et al.[25] They included only six studies with high heterogeneity ($I^2 = 78\%$) in the meta-analysis and failed to state a statistical difference in long-term crestal bone loss. Results of the analysis performed by Cai et al.[25] should be interpreted with caution because of the limited number of studies included. Furthermore, they included only the long-term studies which excluded all the literature published after 2017.

In this meta-analysis, 23 studies were included. The result showed that the flapless placement significantly reduced the crestal bone loss with the mean difference of $-0.14$. This reduced bone loss could be explained by intact periosteum and blood supply which is a known advantage of flapless technique.[63] In flap technique, the branches of suprapheristeal vessels get compromised, affecting...
Lahoti, et al.: Flapless versus flap dental implant surgery

The blood supply. Kim et al. in 2009 in their study on dogs stated that flapless implant placement presented a much richer vascularization. Al Juboori et al. and Kim et al. attributed lesser bone with flapless technique to the excellent defense to bacterial invasion because of the intact bloody supply. Jeong et al. in 2007 showed that sites with flapless technique had a greater bone–implant contact and less bone loss. Similar findings of reduced bone loss with flapless technique were noted by You et al., Mazzocco et al., Kumar et al., Shamsan et al., Maier, and Sunitha and Sapthagiri. The flapless technique ensures a favorable healing environment for the soft-tissue

<table>
<thead>
<tr>
<th>Name</th>
<th>Published time</th>
<th>Sequence generation</th>
<th>Allocation concealment</th>
<th>Incomplete outcome data addressed</th>
<th>Blinding</th>
<th>Estimated potential risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kumar et al.</td>
<td>2018</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Unclear</td>
<td>High</td>
</tr>
<tr>
<td>Shamsan et al.</td>
<td>2018</td>
<td>No</td>
<td>Inadequate</td>
<td>No</td>
<td>No</td>
<td>High</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>2017</td>
<td>Yes</td>
<td>Adequate</td>
<td>Yes</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td>Pisoni et al.</td>
<td>2017</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>No</td>
<td>High</td>
</tr>
<tr>
<td>Froum and Khoury</td>
<td>2017</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Moderate</td>
</tr>
<tr>
<td>Börnicke et al.</td>
<td>2017</td>
<td>Yes</td>
<td>Adequate</td>
<td>Yes</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td>Pozzi et al.</td>
<td>2014</td>
<td>Yes</td>
<td>Adequate</td>
<td>Yes</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td>Tsoukaki et al.</td>
<td>2012</td>
<td>Yes</td>
<td>Adequate</td>
<td>Yes</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td>Cannizzaro et al.</td>
<td>2011</td>
<td>Yes</td>
<td>Adequate</td>
<td>Yes</td>
<td>Yes</td>
<td>Low</td>
</tr>
<tr>
<td>Van de Velde et al.</td>
<td>2010</td>
<td>Yes</td>
<td>Adequate</td>
<td>Yes</td>
<td>Yes</td>
<td>Low</td>
</tr>
</tbody>
</table>

Figure 2: Forest plot of meta-analysis results comparing crestal bone level of flapless and flap surgery groups

Figure 3: Forest plot of meta-analysis results comparing crestal bone level of guided flapless and flap surgeries
architecture as well as hard-tissue volume with reduced time for stable remodeling.\(^6\)

Studies\(^6\) with the view that flapless surgery leads to more crestal bone loss than conventional flap failed to prove a significant difference. One of the reasons for more bone loss associated with flapless technique could be because of the contamination of the surgical site with the epithelial and connective tissue cells from the oral mucosa.\(^6\)

Interestingly, several studies\(^45,48,51,53,56,59\) and reviews\(^5,20\) showed comparable outcome with both the surgical techniques. The flapless surgery can thus be considered as an acceptable treatment option based on the evidence obtained from the literature. The use of CT scans, advanced planning software, surgical guides, and dynamic navigation systems can help to improve the predictability and precision.

Subgroup analysis comparing the guided flapless approach with the conventional surgery did not yield a significant result. This could be attributed to the limited data available and the variability of the guided approach used. Furthermore, there remain concerns with the deviations in the inclination and positioning of implants by flapless surgery from the ideally planned position, which could affect the outcome.\(^5\)

Comparison of the freehand flapless placement with conventional surgery showed a significant difference, indicating that flapless surgery can affect the crestal bone loss even without the use of a guided approach.

Based on the results of this study, the choice of surgical technique significantly affects crestal bone level which is in agreement with a previous systematic review by Zhuang et al. in 2018.\(^23\) However, the studies included have high heterogeneity, and the authors in cases of doubt have opted for direct visualization of the surgical field. Presurgical

---

**Figure 4:** Forest plot of meta-analysis results comparing crestal bone level of freehand flapless and flap surgery groups

**Figure 5:** Funnel plot for studies reporting outcome of crestal bone levels of freehand flapless and flap surgeries

**Figure 6:** Funnel plot for studies reporting outcome of crestal bone levels of guided flapless and flap surgeries

---

Lahoti, et al.: Flapless versus flap dental implant surgery

---

Lahoti, et al.: Flapless versus flap dental implant surgery

---

The Journal of Indian Prosthodontic Society | Volume 21 | Issue 4 | October-December 2021

---

335
Planning is a must to reduce the possible complications. The fear of such complications should not stop the clinicians to acknowledge the benefits that the flapless technique can provide. With the upcoming digital trends in implantology, flapless surgeries have the capacity to evolve with a greater safety margin.

The results of this review should be interpreted with caution because of its limitations. Confounding factors may have affected the outcomes. Further, less emphasis was given on local or systemic condition of patients. Furthermore, heterogeneity of the included studies was high. Double-blinded randomized controlled trials with broader pool of patients to determine the effect of flapless implant surgery on patient outcome variables are required to reach definitive conclusions.

CONCLUSIONS

1. Flapless technique of dental implant placement has significantly less crestal bone loss compared to the flap technique. Therefore, flapless implant surgery can be considered as a promising alternative to conventional flap.

2. The use of a guided or freehand approach of flapless surgery both showed less crestal bone loss compared to flap surgery; however, significant results could not be obtained.

Acknowledgment

The authors acknowledge Swargiya Dadasheb Kalmegh Smruti Dental College and Hospital, Nagpur, and all the concerned authorities for the opportunity to work on this project.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES


54. Marcelis K, Vereeuwen M, Naert I, Teughels W, Quirynen M. Model-

The Journal of Indian Prosthodontic Society | Volume 21 | Issue 4 | October-December 2021 | 337

[Downloaded free from http://www.j-ips.org on Wednesday, November 10, 2021, IP: 49.205.227.88]


Author Help: Reference checking facility

The manuscript system (www.journalonweb.com) allows the authors to check and verify the accuracy and style of references. The tool checks the references with PubMed as per a predefined style. Authors are encouraged to use this facility, before submitting articles to the journal.

- The style as well as bibliographic elements should be 100% accurate, to help get the references verified from the system. Even a single spelling error or addition of issue number/month of publication will lead to an error when verifying the reference.

- Example of a correct style
  

- Only the references from journals indexed in PubMed will be checked.

- Enter each reference in new line, without a serial number.

- Add up to a maximum of 15 references at a time.

- If the reference is correct for its bibliographic elements and punctuations, it will be shown as CORRECT and a link to the correct article in PubMed will be given.

- If any of the bibliographic elements are missing, incorrect or extra (such as issue number), it will be shown as INCORRECT and link to possible articles in PubMed will be given.